Section 3.1: Matrices

A matrix is an ordered rectangular array of numbers, letters, symbols or algebraic expressions. A matrix with m rows and n columns has size or dimension $m \times n$.

The real numbers that make up the matrix are called entries or elements of the matrix. The entry in the i th row and j th column is denoted by $a_{i j}$

A matrix with only one column or one row is called a column matrix (or column vector) or row matrix (or row vector), respectively.

Example 1: Given $A=\left(\begin{array}{ccc}2 & 7 & 7 \\ -5 & 3 & 9 \\ 0 & -10 & 20 \\ 1 & -3 & -11\end{array}\right)$,
a. what is the dimension of A ?
b. identify a_{43}.

Systems of Linear Equations in Matrix Form

In order to write a system of linear equations in matrix form, first make sure the like variables occur in the same column. Then we'll leave out the variables of the system and simply use the coefficients and constants to write the matrix form.

Given the following system of equations:
$2 x+4 y+6 z=22$
$3 x+8 y+5 z=27$
$-x+y+2 z=2$
The coefficient matrix is: $\left(\begin{array}{ccc}2 & 4 & 6 \\ 3 & 8 & 5 \\ -1 & 1 & 2\end{array}\right)$

The constant matrix is: $\left(\begin{array}{c}22 \\ 27 \\ 2\end{array}\right)$

Math 1313 Section 3.1
The augmented matrix is: $\left(\begin{array}{ccc}2 & 4 & 6 \mid 22 \\ 3 & 8 & 5 \mid 27 \\ -1 & 1 & 2 \mid 2\end{array}\right)$
Example 2: Give the coefficient, constant and augmented matrix for the system of equations.

$$
\begin{gathered}
2 x-4 y=15 \\
-3 y+2 z=9 \\
x+y-3 z=-8
\end{gathered}
$$

